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A High-Order Possibilistic C-Means Algorithm
for Clustering Incomplete Multimedia Data
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Abstract—Clustering is a commonly used technique for multi-
media organization, analysis, and retrieval. However, most multi-
media clustering methods are difficult to capture the high-order
nonlinear correlations over multimodal features, resulting in the
low clustering accuracy. Furthermore, they cannot extract fea-
tures from multimedia data with missing values, leading to failure
in clustering incomplete multimedia data that are widespread in
practical applications. In this paper, we propose a high-order pos-
sibilistic C-means algorithm (HOPCM) for clustering incomplete
multimedia data. HOPCM improves the basic autoencoder model
for learning features of multimedia data with missing values.
Furthermore, HOPCM uses the tensor distance rather than the
Euclidean distance as the distance metric to capture as much as
possible the unknown high-dimensional distribution of multime-
dia data. Extensive experiments are carried out on three repre-
sentative multimedia data sets: NUS-WIDE, CUAVE, and SNAE.
The results demonstrate that HOPCM achieves significantly better
clustering performance than many existing algorithms. More im-
portantly, HOPCM is able to cluster both high-quality multimedia
data and incomplete multimedia data effectively, while other exist-
ing methods can only cluster the high-quality multimedia data.

Index Terms—Feature learning, incomplete multimedia data,
possiblistic C-means (PCM) algorithm, tensor distance, vector
outer product.

I. INTRODUCTION

W ITH recent development of visual computing technol-
ogy and wireless communication, multimedia data over

networks are proliferating at extremely high speed for many
applications, for example, in smart traffic monitoring, target
recognition, and customer behavior predicting [1]–[4]. Multi-
media data are very complex in information, properties, and
representation [5]–[7]. First, multimedia data in the real world
comes from many input channels; hence, multimedia data are
a typical kind of multimodal data. Second, different modalities
often convey different information. For example, an image uses
a lot of details such as shading, complex scene, and rich color to
vividly display an object and uses a caption to show things that
may not be obvious in the image, such as the name of the object
[8], [9]. Moreover, different modalities have complex relations.
Finally, a lot of multimedia data suffer from many missing
values as a result of sensor defaults, fault measurements, and
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data transfer problems over networks. In other words, some
multimedia data are incomplete in practical applications. These
characteristics, particularly incompleteness, pose an important
challenge on multimedia clustering techniques.

Clustering techniques aim to partition a large number of data
into groups based on measured similarity. They are usually
applied to the task of multimedia processing such as multimedia
organization, analysis, communication, and retrieval [43]–[45].
Thus, multimedia clustering is a fundamental issue. Many
multimedia clustering algorithms have been developed. Con-
ventional clustering algorithms for multimedia data focus on
single-modal data, such as image clustering, audio clustering,
and text clustering. In recent years, the multimedia data coclus-
tering approaches have drawn much attention from researchers
[10]–[13]. Some works aim at image–text coclustering, while
other methods have developed for image–audio clustering. Al-
though existing algorithms perform their job well for clustering
multimedia data, they have still several drawbacks elaborated
as follows. First, most of them are generally designed for high-
quality data; hence, they fail to cluster incomplete multimedia
data. Second, most of them are mainly performed upon bimodal
multimedia data. However, many multimedia data are multi-
modal, such as a chip of video containing texts, images, and
audio. Finally, they combine the features of different modalities
by only concatenating them linearly, making them hard to
capture the high nonlinear correlations over different modalities
that exist in the level of features, resulting in a low clustering
accuracy.

In view of the aforementioned issues, we propose a high-
order possibilistic C-means (HOPCM) algorithm based on fea-
ture learning for clustering incomplete multimedia data in this
paper. HOPCM is implemented by three steps: unsupervised
feature learning, feature fusion, and high-order clustering. First,
we improve the basic autoencoder (BAE) model to learn fea-
tures from incomplete data. Each single modality of multimedia
data is separately learned by the improved autoencoder (AE)
model. Next, the vector outer product is used to fuse the learned
features to model the nonlinear correlations over different
modalities, which aims at forming the joint representation of
multimedia data. Finally, a HOPCM algorithm is implemented
for clustering the multimedia data in the tensor space. HOPCM
uses the tensor distance rather than Euclidean distance as the
metric between two objects to capture as much as possible the
unknown high-dimensional distribution of multimedia data.

To evaluate the performance of the proposed algorithm, we
carry out some experiments on three representative multimedia
data sets: NUS-WIDE, CUAVE, and SNAE. The results demon-
strate that HOPCM achieves significantly better clustering
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performance than that by many existing algorithms. More im-
portantly, HOPCM is able to cluster both high-quality multi-
media data and incomplete multimedia data effectively, while
other existing methods can only cluster the high-quality data.

The contributions of this paper can be summarized as the
following three aspects: first, we improve the BAE model to
learn features of incomplete data. Second, to capture the high
nonlinear correlations over different modalities of multimedia
data, we use the vector outer product to fuse the learned features
of each modality to form the joint representations of multimedia
data. Finally, to cluster the multimedia data in the tensor space,
we design a HOPCM algorithm by using the tensor distance
as the distance metric that encourages HOPCM to capture as
much as possible the unknown high-dimensional distribution
of multimedia data.

The rest of the paper is organized as follows: Section II
presents the preliminaries related to this paper. The problem
formulation of multimedia clustering is described in Section III.
The proposed algorithm is illustrated in Section IV, and the
performance evaluation and analysis is described in Section V.
Section VI reviews related work on multimedia clustering.
Finally, the whole paper is concluded in Section VII.

II. PRELIMINARIES

A. AEs

The AEs have been successfully used in unsupervised feature
learning for many application domains, such as, for example, im-
age processing, audio recognition, and natural language analysis.

A BAE is defined by a parameter set θ = (W (1), b(1);W (2),
b(2)), where (W (1),W (2)) are weight matrices, and (b(1), b(2))
are bias vectors [15]. The BAE maps an input x to hidden
representation h by an encoding function f as follows:

H = fθ

(
W (1) �X + b(1)

)
(1)

where f is a nonlinear activation function, typically a logistic
sigmoid sf (x) = 1/(1 + e−x).

Then, the BAE reconstructs the input from hidden represen-
tation by a decoding function

Y = hW,b(X) = gθ

(
W (2) �H + b(2)

)
(2)

where g is the decoding function, which is also a sigmoid
function.

Thus, the parameters are trained by minimizing the following
function:

JAE(θ) =
∑
x∈D

L (x, g (f(x))) (3)

where L is the reconstruction error that can be typically defined
by a squared error or a cross-entropy.

To prevent overfitting, a regularization term called weight
decay is added into the reconstruction error

JAE+wd(θ) =

(∑
x∈D

L (x, g (f(x)))

)
+ λ

∑
ij

W 2
ij (4)

where the λ hyperparameter controls the strength of the
regularization.

The weights and biases of the AE can be trained typically by
the back-propagation algorithm.

In recent years, several variants of the AE have been devel-
oped by imposing different constraints. The most well-known
constraint is called sparsity regularization, which aims to
achieve a sparse representation of the input. Different sparsity
regularization can generate different sparse representation. The
most widely used sparsity regularization is a Kullback–Liebler
divergence with respect to the binomial distribution [16], [17].

Another AE model is called the denoising AE (DAE), whose
goal is to learn robust representations from a noisy input
[18]–[20]. The DAE simply corrupts input x, before sending it
through the AE, and then reconstructs the clean version. Thus,
the DAE has an objective function as follows:

JDAE(θ) =
∑
x∈D

Ex̃∼q(x̃|x) [L (x, g (f(x̃)))] (5)

where the expectation is over corrupted versions x̃ of examples
x obtained from a corruption process q(x̃|x).

Similar to the motivation of DAE, to learn robust represen-
tations, a contractive AE (CAE) is proposed to enhance the
robustness with the training objective [21], [22]

JCAE(θ) =

(∑
x∈D

L (x, g (f(x)))

)
+ λ ‖Jf (x)‖2 . (6)

One drawback of CAE is that its analytic penalty only en-
courages robustness to infinitesimal input variations. Rifai et al.
improved the CAE model with an objective function

JCAE+H =
∑
t

L
(
x(t), gθ

(
x(t)

))
+ λ

∥∥∥J (
x(t)

)∥∥∥2
F

+ γEε[‖J(x)− J(x+ ε)‖2F (7)

where ε ∼ N(0, σ2I), and γ is the associated regularization
strength hyperparameter.

AEs and their variants have been applied successfully in
learning features for various data, such as text, images, and
audio. However, they fail to learn features for incomplete data.

B. PCMs

A possibilistic C-means (PCM) algorithm is defined by a
matrix U = {uij}, where uij denotes what degree xj belongs
to the ith cluster, with a constraint as follows:

uij ∈ [0, 1] for all i and j, 0 <

n∑
j=1

uij ≤ N

for all i, maxiuij > 0 for all j. (8)

PCM minimizes the following objective function [23]:

Jm(U, V )=
c∑

i=1

n∑
j=1

um
ij ‖xk−vi‖2+

c∑
i=1

ηi

n∑
j=1

(1−uij)
m (9)

where V = (v1, v2, . . . , vc) is a C-tuple of prototypes, m > 1
is a fuzzification constant, and ηi is a suitable positive number.
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Solving the minimization problem yields membership func-
tions of the form

uij =
1(

1 +
(

dij

ηi

) 1
m−1

) . (10)

The cluster centers are updated using

vi =

∑n
j=1 u

m
ijxj∑n

j=1 u
m
ij

. (11)

The PCM algorithm can be outlined as follows:

Step 1: Choose m, c, and ξ > 0 and then initialize the mem-
bership matrix U (0);

Step 2: Update cluster centers using (11);
Step 3: Estimate ηi using the following formula:

ηi =

∑n
j=1 u

m
ijd

2
ij∑n

j=1 u
m
ij

. (12)

Step 4: Calculate the distance dki between xk and vi;
Step 5: Update membership matrix U using (10);
Step 6: If ε ≤ ‖uij − u′

ij‖
2, stop; else repeat step 2.

PCM has been used in image clustering and speech recog-
nition; however, it still has several drawbacks in the practical
applications. For example, PCM is often corrupted by noise
and tends to produce coincident clusters. In recent years, many
variants have been developed for improving the original PCM
algorithm.

Zhang and Leung applied the fuzzy method to PCM for
overcoming the noise sensitivity [24]. Yang and Lai improved
the PCM algorithm to find the suitable number of clusters auto-
matically by using a merging strategy [25]. Another improved
PCM algorithm was developed by Xie et al. to enhance the
robustness [26]. Another representative improved algorithm is
the kernel-based PCM algorithm, which first maps original data
into higher dimensional feature space and then clusters the data
in the feature space [27]. The kernel-based PCM algorithm
is performed very well in finding clusters with nonspherical
shapes. In addition, Schneider has developed the weighted PCM
to find homogeneous groups [28], [29]. To cluster incomplete
data, Zhang and Chen presented a weighted PCM algorithm by
applying the partial distance strategy to PCM [14]. Other meth-
ods for improving PCM include possibilistic fuzzy C-means
(PFCM) and fuzzy possibilistic C-means (FPCM) [30].

Although these methods are performed well in the cluster
process, they can only cluster single-modal data, such as re-
lational data and image, making it hard to cluster multimedia
data with multiple modalities.

III. PROBLEM FORMULATION

Consider a data set with t objects X = {x1, x2, . . . , xt}.
Each object is represented by m features with the form A =
{a1, a2, . . . , am}. For example, an image R28×28 can be rep-
resented by 576 raw pixels, which means that each element in
the feature set A is denoted as a pixel. The goal of multimedia
clustering is to partition the data set into several groups based

on the similarity measure, such that the objects belonging to
the same group share much similarity. For example, in the
web document domain, the clustering task is to identify similar
documents based on the visual content, audio element, and text
features.

As reviewed in the previous section, the multimedia cluster-
ing task poses a number of issues and challenges, particularly
for incomplete multimedia data. We discuss the key challenges
in three aspects as follows.

1) Feature Learning of Incomplete Data: Feature extraction
and analysis is the fundamental step of clustering. Feature
learning has been well studied in literature. Typically, many
feature learning methods based on machine learning tech-
niques, including deep learning that is an extremely active
subfield of machine learning, have been successfully used in
visual feature extraction, text feature analysis, and audio feature
learning. Unfortunately, current techniques focus on feature
learning for high-quality data. In other words, they cannot learn
features of incomplete data. Hence, feature learning of incom-
plete data is the first problem to be solved for clustering multi
media data.

2) Joint Representation of Multimedia Data: Feature fusion
and joint representation of multimedia data plays an important
role in the clustering task. Existing works on feature fusion rely
on some global optimization methods. They are usually of high
computational complexity. Furthermore, they do not address
the problem of weighting the feature modalities in their objec-
tive functions, leading to a poor joint representation of multi-
media data.

3) Distance Measure in the Tensor Space: Distance mea-
sure is the key challenge related to multimedia clustering.
Many metrics can be used to measure the distance between
different objects, such as Euclidean distance, Mahalanobis dis-
tance, and Hamming distance. However, most of them work in
the vector space, making them hard to measure the distance
between different objects in the tensor space. Thus, how to mea-
sure the distance is a key challenge in a multimedia clustering
algorithm.

IV. DESCRIPTION OF THE PROPOSED METHOD

A general HOPCM algorithm is implemented by three
stages, i.e., unsupervised feature learning, feature fusion, and
high-order clustering, which is shown in Fig. 1.

In unsupervised feature learning, each single modality of
multimedia data is separately learned by the improved AE
model. Next, the vector outer product is used to fuse the learned
features to form the joint representation of multimedia data.
Finally, a HOPCM algorithm is used to cluster the multimedia
data for producing the final result.

A. Improved AE Model

To learn features of incomplete multimedia data, we divide
the raw data set with missing values into two different subsets
C and O. In the subset O, each sample contains some missing
values, whereas each sample in the other subset has no missing
values.
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Fig. 1. Architecture of the proposed method.

TABLE I
SIMPLE EXAMPLE OF THE INCOMPLETE DATA SET

In particular, the subset C is called the complete subset,
whereas the other one is called the incomplete subset. Table I
shows a simple example of the incomplete data set sampled
from Digital Home Lab.

In Table I, ∗ represents the missing values. In Table I, there
is one missing value in the fourth record, whereas there are two
missing values in the last record. The two records are called
incomplete objects, whereas the others are called complete
objects.

Hence, for the data set X in Table I, the incomplete sub-
set C = room4, room5, whereas the other subset O = room1,
room2, room3.

The paper improves a BAE for learning features from incom-
plete objects, which is performed as follows.

First, we get a stochastic instance subset P = {xi|i = 1,
2, . . . , n} by choosing many samples from C. Next, we delete
some attribute values from every sample in the instance sub-
set. Finally, we replace the deleted values with random val-
ues. Therefore, we can obtain a training subset T = {xi|i =
1, 2, . . . , n} using these deleted samples.

The improved AE model, which is presented in Fig. 2, maps
each sample in subset T to a hidden data y via the following
encoder function:

y = fθ(x
′) = s

(
W (1)x′ + b(1)

)
. (13)

Next, y is mapped back to an object z as follows:

z = gθ(y) = s
(
W (2)y + b(2)

)
. (14)

Fig. 2. Improved AE model.

The parameter θ = (W (1), b(1);W (2), b(2)) is trained typi-
cally by the back-propagation algorithm [31].

After getting the improved AE model, we can use it to learn
features of the samples with missing values.

B. Feature Fusion via the Vector Outer Product

Here, the learned features of each modality are fused via the
vector outer product.

The outer product is one of the most common types of
tensor multiplications defined in literature [32]. Given an
N -order tensor A ∈ RI1×I2×···×IN and an M -order tensor B ∈
RJ1×J2×···×JM , their outer product will produce an (N +M)-
order tensor C ∈ RI1×I2×···×IN×J1×J2×···×JM . Each entry in the
tensor C is defined as ci1,...,iN ,j1,...,jM = ai1,...,iN · bj1,...,jM ,
where ai1,...,iN , bj1,...,jM , ci1,...,iN ,j1,...,jM are one entry in
the tensor A,B,C, respectively. The vector outer product
is a special form of the outer product. In detail, the outer
product of two nonzero vectors a ∈ RI , b ∈ RJ produces a
matrix X = a ◦ b = abT ∈ RI×J , and the outer product of
three nonzero vectors a ∈ RI , b ∈ RJ , c ∈ RK produces a
3-order tensor X = a ◦ b ◦ c ∈ RI×J×K , whose entries are
xijk = ai · bj · ck.

For an image, text, and an audio, we use three vectors a, b, c
to represent their features learned by the improved AE model,
respectively. Then, the vector outer product is used to fuse the
learned features to form the joint representation of multimedia
data according to the following rules.

1) For the multimedia data with an image and a text, its joint
representation is denoted as X = a ◦ b = abT .

2) For the multimedia data with an image and an audio, its
joint representation is denoted by X = a ◦ c = acT .

3) For the multimedia data with an image, a text and an
audio, its joint representation is denoted byX=av ◦ b ◦ c.

C. HOPCM Algorithm

In the paper, the PCM algorithm is used to cluster the joint
representation obtained in Section IV-B for the final cluster-
ing result. The conventional PCM works in the vector space;
however, the joint representation of the multimedia data is
represented by the high-order tensor. For example, the joint
representation of the multimedia data with an image, a text,
and an audio is represented by a 3-order tensor. Thus, this
paper designs a HOPCM algorithm by extending PCM from
the vector space to the tensor space.
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The HOPCM algorithm has the similar objective function

Jm(U, V ) =

c∑
i=1

n∑
j=1

um
ijdki +

c∑
i=1

ηi

n∑
j=1

(1− uij)
m. (15)

In the conventional PCM algorithm, dki refers to the
Euclidean distance between xk and vi, while it represents the
tensor distance in the HOPCM algorithm.

The tensor distance is an effective tool for measuring the
distance between two samples for high-order complex data by
capturing the correlation in the high-order tensor space [33].

Given an N -order tensor X ∈ RI1×I2×···×IN , x is denoted
as the vector form representation of X , and the element
Xi1i2...iN (1≤ij≤Ij ,1≤j≤N) in X is corresponding to xl, i.e., the

lth element in x, where l = i1 +
∑N

j=2

∏j−1
t=1 It. Then, the

tensor distance between two N -order tensors is defined as

dTD =

√√√√I1×I2×···×IN∑
l,m=1

glm(xl − yl)(xm − ym)

=
√
(x− y)TG(x− y) (16)

where glm is the metric coefficient used to capture the correla-
tions between different coordinates in the tensor space, which
is defined as

glm =
1

2πδ2
exp

{
−‖pl − pm‖22

2δ2

}
(17)

where ‖pl − pm‖2 is defined as

‖pl − pm‖2 =

√
(i1 − i′1)

2 + · · ·+ (iN − i′N )2. (18)

The details of the tensor distance can be referred to [33].
Solving the minimization problem yields the same form of

membership functions uij = 1/(1 + (dij/ηi)
1/(m−1)), where

dki refers to the tensor distance between xk and vi. The way
for updating cluster centers is the same with PCM.

Therefore, the HOPCM algorithm can be described as
follows:

Step 1: Choose m, c, and ξ > 0 and then initialize the mem-
bership matrix U (0);

Step 2: Update cluster centers using (11);
Step 3: Estimate ηi using (12);
Step 4: Calculate the tensor distance dki between xk and vi;
Step 5: Update membership matrix U ;
Step 6: If ε ≤ ‖uij − u′

ij‖
2, stop; else repeat step 2.

By comparing the steps of the PCM algorithm and the
HOPCM algorithm, it can be observed that they share the same
computational complexity that is dominated by the computa-
tion of the distance between xk and vi, which needs O(n2)
operations for each cluster. Thus, the HOPCM algorithm has
a total time complexity of O(tcn2). Their difference is mainly
demonstrated in the fourth step. In the fourth step, PCM calcu-
lates the Euclidean distance between xk and vi, while HOPCM
calculates the tensor distance.

V. EXPERIMENTS

Here, we evaluate the performance of the proposed HOPCM
algorithm on three representative data sets: NUS-WIDE,
CUAVE, and SNAE.

A. Evaluation Criteria

In order to assess the effectiveness of HOPCM, two well-
known evaluation criteria, i.e., E∗ and adjusted Rand index
(ARI), are used in the experiment [34], [35].
E∗ is used to assess the error between ideal clustering centers

and the clustering centers produced by a specific algorithm. E∗
is calculated by the following:

E∗ =

√√√√ c∑
i=1

∥∥viideal − vi∗
∥∥2 (19)

where viideal represents the ith ideal cluster center, and vi∗ de-
notes the ith cluster center produced by a specific algorithm ∗.
A lower value of E∗ indicates that the algorithm produces more
accurate clustering centers.

ARI(U,U ′) [46], [47] is used to measure the agreement
between two possibilistic partitions of a set of objects, where
U represents the ground truth labels for the objects in the
data set, and U ′ denotes a partition produced by a specific
algorithm. A higher value of ARI(U,U ′) indicates that the
algorithm produces a more accurate clustering result. Note that,
to calculate the ARI of PCM and HOPCM, we need to harden
the possibilistic partitions by setting the maximum element in
each column of U ′ to 1, and all else to 0.

B. Experiments on the NUS-WIDE Data Set

The NUS-WIDE data set, the largest well-annotated web
image set, consists of 269 648 images [36]. Each image is
annotated by filtered surrounding texts that are grouped into 81
concepts. The images of the NUS-WIDE data set are down-
loaded from the famous photo-sharing website Flickr.com. To
verify the robustness of the proposed algorithm, we collected
the representative images from the NUS-WIDE data set to
generate eight different data sets. Every data set consists of
10 000 images, which fall into 14 categories. The goal of
this experiment is to verify the performance of the HOPCM
algorithm in clustering high-quality multimedia data sets, by
comparing with K-means, spectral relational clustering (SRC)
[39], and nonnegative matrix factorization (NMF) [40].

For K-means, we first perform the same preprocessing
method with HOPCM, i.e., the AE model, on the NUS-WIDE
data set to extract visual features and textual features and then
concatenate these features to form a feature vector. Finally, we
use the Euclidean distance for clustering the feature vectors by
K-means.

We collected different images of the NUS-WIDE data to
generate eight subsets to compare the robustness performance
of the four algorithms. The clustering results are presented in
Tables II and III.
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TABLE II
CLUSTERING RESULT IN TERMS OF E∗

TABLE III
CLUSTERING RESULT IN TERMS OF ARI

Fig. 3. Clustering result in terms of E∗.

Table II shows the clustering performance in terms of E∗.
We observe that the values of E∗ obtained by HOPCM are
the lowest in all eight data subsets and the overall data set,
which demonstrates that HOPCM produces the most accurate
clustering centers. K-means usually performs worst, whereas
NMF achieves the better result than SRC.

In Table III, the values of ARI obtained by HOPCM are
significantly higher than that obtained by the others, which
demonstrates that HOPCM produces the most accurate cluster-
ing result in terms of ARI.

It is worth noting that HOPCM outperforms the others in all
cases. In particular, the values of E∗ are lower than 3.0, and
the values of ARI are higher than 0.8, for all the data sets.
Therefore, we can conclude that HOPCM achieves the best
performance of robustness, in terms of E∗ and ARI. Generally,
the four algorithms need a prefixed number of clusters. There-
fore, we compare their performance with different numbers
of clusters, ranging from 11 to 18. The result is shown in
Figs. 3 and 4.

Figs. 3 and 4 show that HOPCM outperforms the other three
algorithms, in all cases, based on the fact that the values of E∗
obtained by HOPCM are the lowest and the values of ARI
obtained by HOPCM are significantly higher than that obtained

Fig. 4. Clustering result in terms of ARI.

by the others. When the number of clusters is 14, the four
algorithms achieve the best performance at the same time,
implying that 14 is most likely to be the correct number of
clusters.

C. Experiments on the CUAVE Data Set

The CUAVE data set is composed of 36 individuals saying
the digits from 0 to 9 [37]. To verify the performance of the
HOPCM algorithm, we added text annotations in this data set.
The goal of this experiment is to verify the performance of the
HOPCM algorithm in clustering incomplete multimedia data
by comparing with K-means and PCM. Note that there are no
ideal clustering centers in this data set; hence, we use only ARI
to evaluate the performance of HOPCM.

For the CUAVE data set, we can generate three different
data subsets, which are associated with different combinations
of each bimodality, i.e., an image–text subset, an image–audio
subset, and a text–audio subset. Thus, we have four different
data sets, including the overall CUAVE data set, in total.

For PCM and K-means, we first perform the same prepro-
cessing method with HOPCM, i.e., the AE model, to extract
visual, textual, and audio features and then concatenate these
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TABLE IV
AVERAGE VALUES OF ARI ON THE IMAGE–TEXT SUBSET

TABLE V
AVERAGE VALUES OF ARI ON THE IMAGE–AUDIO SUBSET

TABLE VI
AVERAGE VALUES OF ARI ON THE TEXT–AUDIO SUBSET

TABLE VII
AVERAGE VALUES OF ARI ON THE OVERALL DATA SET

features to form a feature vector. Finally, we use the Euclidean
distance for clustering the feature vectors by PCM andK-means.

We artificially create 10% missing values in the four data
sets, for simulating incomplete data sets, and then cluster them
using the three algorithms. For example, we randomly remove
10% pixel values to simulate an incomplete image. We generate
five different incomplete data sets for each data set. Specifically,
any two data sets of the five different incomplete data sets can
have different missing values. Tables IV–VII present the aver-
age values of ARI obtained over ten trials on such incomplete
data sets.

According to Tables IV–VII, when the missing ratio is 10%,
the average values of ARI obtained by HOPCM are signifi-
cantly higher than that obtained by the other two algorithms in
all cases, indicating that HOPCM produces the most accurate
clustering result in terms of ARI. There are two reasons for
this result. On one hand, HOPCM fuses the learned features
of different modalities by using the outer product to model
the nonlinear correlations over multiple modalities, whereas
the other two methods only concatenate the learned features,
making them hard to model the nonlinear correlations over
multiple modalities. On the other hand, HOPCM is able to
capture the high-dimensional distribution of the multimedia
data by using the tensor distance as the metric. Thus, HOPCM
achieves the best performance for clustering multimedia data.

Since the clustering performance depends on the amount
of missing values, we artificially create six kinds of missing
ratios, which are 5%, 10%, 15%, 20%, 25%, and 30%. For
every missing ratio, we perform three algorithms for ten times.
Figs. 5–8 present the corresponding clustering results.

Fig. 5. Clustering result on the image–text subset.

Fig. 6. Clustering result on the image–audio subset.

Fig. 7. Clustering result on the text–audio subset.
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Fig. 8. Clustering result on the overall subset.

Fig. 9. Clustering result on different data sets.

According to Figs. 5–8, with the increase of the missing
ratio, the average values of ARI are lower, which argues that
the clustering accuracy is corrupted by missing ratios. To be
more exact, the increasing missing ratio will result in the lower
clustering accuracy. It is worth noting that HOPCM outper-
forms the others, in terms of ARI, in all cases, based on the
fact that the average ARI values of HOPCM are significantly
higher than that of the other two methods for six missing ratios.
Hence, we can say that HOPCM produces more accurate clus-
tering result than the other two methods, in terms of ARI,
indicating that HOPCM is effective in clustering incomplete
multimedia data.

Next, we investigate the relationship between the clustering
result and the different combinations of modalities. We perform
the HOPCM algorithm on the four different data sets under the
six missing ratios. The result is shown in Fig. 9.

Fig. 10. Clustering result on the SNAE data set.

We observe that the best clustering performance is always ob-
tained by performing the HOPCM algorithm on the overall data
set, which demonstrates that the clustering performance of mul-
timedia data depends on the joint features of image–text–audio
modalities. In addition, the worst clustering result is obtained
on the text–audio subset. The reason may be due to the fact that
the text–audio modalities cannot reflect the essential features of
the CUAVE data set.

D. Experiments on the SNAE Data Set

We have collected a total of 180 video clips to form the
SNAE data set from YouTube [48]. The video data set is
classified into four clusters: sport, new, advertisement, and
entertainment. We have performed experiments to demonstrate
the validity of the proposed HOPCM algorithm, by comparing
with K-means and PCM, on this data set.

For PCM and K-means, we first perform the same prepro-
cessing method with HOPCM, i.e., the AE model, to extract
visual and audio features and then concatenate these features to
form a feature vector. Finally, we use the Euclidean distance for
clustering the feature vectors by PCM and K-means.

Similar to the experiments on the CUAVE data set, we arti-
ficially create six kinds of missing ratios, which are 5%, 10%,
15%, 20%, 25%, and 30%. For every missing ratio, we perform
three algorithms for ten times. Fig. 10 presents the average val-
ues of ARI obtained over ten trials on such incomplete data sets.

According to Fig. 10, with the increase of the missing ratio,
the average values of ARI are lower, which argues that the
clustering accuracy is corrupted by missing ratios. It is worth
noting that HOPCM outperforms the others, in terms of ARI,
in all cases, based on the fact that the average ARI values of
HOPCM are significantly higher than that of the other two
methods for six missing ratios. Hence, HOPCM produces the
best clustering result, demonstrating that HOPCM is effective
in clustering incomplete video data, as well.

VI. RELATED WORKS

Multimedia clustering aims to group the multimedia data into
clusters, such that the objects belonging to the same cluster
should be more similar to each other than to the objects in
the other clusters. Multimedia clustering is an import technique
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for multimedia organization, analysis, and retrieval. In recent
years, many algorithms have been developed for clustering
multimedia data.

For instance, Gao et al. developed a consistent bipartite graph
copartitioning for heterogeneous data coclustering, which is the
typical approach on image–text coclustering [38]. Long et al.
presented an SRC algorithm for multitype relational data based
on a graph model [39]. SRC clusters multimedia data by
minimizing a reconstruction error of both an affinity matrix
and a feature matrix. SRC is usually inefficient in clustering
large-scale multimedia data since it needs to calculate the
eigendecomposition. Xu et al. proposed a document clustering
algorithm based on the NMF [40]. Afterward, Gu and Zhu
extended the NMF method to multimedia coclustering [41].
NMF achieves a good clustering result. Chen et al. proposed a
symmetric nonnegative matrix trifactorization algorithm, which
reveals the relationship between each data item and a predefined
number of clusters by deriving a latent semantic space [11].
Meng et al. developed a semisupervised heterogeneous fusion
for multimedia data coclustering, which is called GHF-ART
[13]. GHF-ART is effective in clustering multimedia data.
However, it only focuses on text–image coclustering. Another
type of multimedia clustering is based on information theory.
For example, Bekkerman et al. [42] proposed the combinatorial
Markov random fields (Comrafs) for the multimodal informa-
tion coclustering based on the information bottleneck theory.
The performance of this kind of algorithms is usually limited
by the high computational complexity.

In spite of all the recent achievement in clustering multime-
dia data, as discussed earlier, existing methods have still some
shortcomings in the following three aspects. First, they cannot
cluster multimedia data with missing values since they are hard
to learn features from incomplete data. Second, they do not
model high nonlinear correlations over the multiple modalities
of multimedia data, leading to a bad clustering result. Finally,
most of them focus on only bimodalities. Therefore, their
performance is limited when clustering the multimedia data
with more than two modalities.

VII. CONCLUSION

In this paper, we propose a HOPCM algorithm for cluster-
ing incomplete multimedia data. Different from many existing
techniques that can only cluster multimedia without missing
values, the HOPCM algorithm is able to cluster incomplete data
by designing an improved AE model for learning features of
multimedia data with missing values. Another unique property
of the proposed algorithm is the use of the vector outer product
and the tensor distance. The vector outer product is used to fuse
the learned features of different modalities to form the joint rep-
resentation of multimedia data. The tensor distance encourages
HOPCM to capture as much as possible the unknown high-
dimensional distribution of multimedia data. The results dem-
onstrate that HOPCM achieves significantly better clustering
performance than many existing algorithms. More importantly,
HOPCM is able to cluster both high-quality multimedia data and
incomplete multimedia data effectively, whereas other existing
methods can only cluster the high-quality multimedia data.
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